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Miscible rectilinear displacements with gravity
override. Part 1. Homogeneous porous medium
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Rectilinear homogeneous miscible displacements with gravity override are analysed
by means of direct numerical simulations on the basis of the vorticity–streamfunction
formulation of the governing equations. The vorticity-based point of view offers the
advantage of clearly attributing the dominant flow characteristics to the effects of vis-
cosity contrast, density difference, impermeable boundary conditions, or interactions
among the above. Basic considerations regarding the vorticity field show that in an
integral sense the coupling between viscosity and gravity vorticity is predominantly
one way in nature, in that the gravity vorticity can amplify the viscous vorticity, but
not vice versa. In particular, the vorticity point of view provides an explanation for
the formation of the gravity tongue in terms of a focusing mechanism, which results
from the combined action of the unfavourable viscosity gradient and the potential
flow field generated by the interaction of the gravitational vorticity with the hori-
zontal boundaries. This potential velocity field locally enhances the uniform global
displacement velocity near the upper boundary, and thereby amplifies the viscous
fingering instability along this section of the interface. In some parameter ranges, the
gravity tongue exhibits interesting interactions with the viscous fingers next to it, such
as pinching and partial merging. The influence of the Péclet number, the viscosity and
density contrasts, and the aspect ratio on the dynamic evolution of the displacement
is investigated quantitatively.

1. Introduction
The exploration of porous media flows involving fluids of different viscosities

and/or densities has covered several decades. Early and relatively simple theoretical
models for gravity-dominated flows were developed by Dietz (1953), cf. also the recent
work by Yortsos (1991), and subsequently extended by Sheldon & Fayers (1962) as
well as Fayers & Muggeridge (1990). These models are reasonably successful in
predicting the rate of propagation of the so-called gravity tongue that often develops
when density effects dominate. At the other end of the spectrum, displacements
governed by viscosity effects have been investigated extensively as well, experimentally,
theoretically, and by means of computations, dating back to the pioneering work
of Hill (1952). In particular, the linear instability of the front responsible for the
formation of viscous fingers has been analysed, along with their nonlinear growth

† To whom correspondence should be addressed, present address: Department of Mechanical
and Environmental Engineering, University of California, Santa Barbara, CA 93110, USA, e-mail:
meiburg@engineering.ucsb.edu



226 M. Ruith and E. Meiburg

and interactions among them. Recent reviews of the field are given by Homsy (1987),
Yortsos (1990), as well as McCloud & Maher (1995).

The intermediate regime, in which the competing gravitational and viscous forces
approximately balance each other, represents an interesting parameter range whose
dynamics are still only partially understood at this time. Depending on a variety
of circumstances, such flows may or may not give rise to a gravity tongue, and
to additional viscous fingers. Limited and somewhat qualitative information can
be gained from the early two-dimensional experiments, performed in thin slabs, of
Blackwell, Rayne & Terry (1959), van der Poel (1962), Pozzi & Blackwell (1963),
as well as Crane, Kendall & Gardner (1963). More recently, novel experimental
approaches have allowed three-dimensional investigations as well, cf. the computed
tomography study of a quarter five-spot displacement by Withjack & Akervoll (1988).
In addition, over the last decade or so large-scale numerical simulations have emerged
as a useful new tool, which often can provide access to information that is difficult to
extract experimentally. For example, Christie, Jones & Muggeridge (1990), Christie,
Muggeridge & Barley (1993), as well as Sorbie, Zhang & Tsibuklis (1995) have been
able to demonstrate good agreement between experiments and numerical simulations,
which typically were based on conventional finite difference approaches. More recently,
several experimental and computational investigations (Moisses, Miller & Wheeler
1989; Chang et al. 1991; Gorell 1992; Sorbie et al. 1992; Waggoner, Castillo & Lake
1992; Bacri et al. 1992; Araktingi & Orr 1993; Tchelepi et al. 1993; Lenormand 1995;
Batycky, Blunt & Thiele 1996) have analysed the role of permeability heterogeneities
in viscously unstable displacements.

While all of the above investigations clearly demonstrate that heterogeneity can
significantly alter the dynamics of such displacements, the parameter regime in which
viscosity, gravity and permeability effects are of comparable strength was addressed in
detail only by the groups around Tchelepi, Orr and Salin. In particular, the detailed
numerical work by Tchelepi (1994) was able to break new ground in this regard.
This author employs a mixed computational approach that combines a traditional
Eulerian finite difference discretization for the pressure equation with Lagrangian
particle tracking for the concentration equation, in order to analyse the transition
from viscosity- to density-dominated displacements, in both homogeneous as well
as heterogeneous media, and furthermore in two as well as three dimensions. Com-
parisons indicate that if gravitational forces strongly dominate viscous forces, two-
and three-dimensional simulations display similar behaviour. On the other hand, in
the transitional region where buoyancy and viscous forces are of similar magnitude,
significant discrepancies are observed, which can show the two-dimensional flow dom-
inated by viscous fingering, while the three-dimensional displacement exhibits a strong
influence of buoyancy forces.

Tchelepi furthermore presents a scaling analysis of the convective effects, i.e. in the
absence of diffusion or dispersion. By normalizing the distance along each coordinate
direction with the domain dimension in that direction, he is able to derive the
relevant convective scaling groups that allow for comparisons between domains of
different aspect ratios. In this way, he clearly identifies the role of the aspect ratio
in determining the influence of gravitational segregation, which is shown to be more
important in longer, thinner domains.

All of the above computational investigations employ formulations of the govern-
ing equations in primitive variables, i.e. velocity and pressure. While this approach
may have the advantage that most researchers are familiar with analysing dynamical
mechanisms in terms of these quantities, there are also some drawbacks. In particu-
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lar, in this formulation the equations do not allow a clear separation of the various
physical effects. Phrased differently, during the course of a numerical simulation it is
difficult to distinguish which components of the pressure, or the velocity, are due to
viscosity, or density, or permeability effects. In this regard, an alternative, vorticity-
based formulation offers some clear advantages. Although it has been known at least
since the work of de Josselin de Jong (1960) that the equations can be written in
terms of the vorticity variable, the full potential of this approach has been realized
only more recently, with the emergence of large-scale direct numerical simulations
as a powerful tool for exploring the dynamics of porous media displacements. As
will be discussed below, the equation governing the vorticity, and thereby the ve-
locity, clearly identifies the components that are due to viscosity contrast, density
difference, permeability variation and, in immiscible flows, surface tension. Hence the
governing equations allow an interpretation of the displacement dynamics in terms
of interactions among the different physical mechanisms, namely fingering instability,
gravitational segregation, and channelling induced by heterogeneity fluctuations.

This possibility to interpret porous media flows in terms of their vorticity dynamics
has been successfully exploited in the past, both for immiscible as well as miscible
displacements. While Tryggvason & Aref (1983, 1985), Meiburg & Homsy (1988a, b)
and others address the immiscible case, a number of more recent investigations focus
on miscible flows. Tan & Homsy (1988) provide a vorticity-based explanation of the
spreading, shielding and splitting sequence observed in neutrally buoyant, viscously
unstable rectilinear displacements. Zimmerman & Homsy (1992) point to the absence
of a vortex stretching term in the vorticity form of Darcy’s law as the reason for the
strong similarity between two- and three-dimensional porous media displacements,
as opposed to Navier–Stokes flows. Tan & Homsy (1992) investigate heterogeneous
rectilinear displacements. By interpreting the dynamical evolution of the flow in terms
of the interacting viscosity- and permeability-related vorticity components, they are
able to identify a resonance mechanism that occurs when these two components
are active at comparable length scales. For quarter five-spot displacements, Chen &
Meiburg (1998b) demonstrate that this resonance mechanism is responsible for the
minimum in the breakthrough recovery observed at intermediate correlation lengths
of the heterogeneity field. For a further analysis of the interaction of those two
vorticity components, see de Wit & Homsy (1997a, b).

Manickam & Homsy (1995) treat the case in which gravity acts either parallel or
antiparallel to the flow direction. Rogerson & Meiburg (1993a, b) focus on the mutual
interaction of the viscosity- and gravity-related vorticity components in unbounded
homogeneous displacements where gravity acts in the direction perpendicular to the
flow. In their linear stability analysis, they identify the emergence of a quadrupole
structure in the vorticity field as the main reason for the stabilization of the flow
by gravitational forces. For non-monotonic viscosity profiles, similar observations
of quadrupole structures in the vorticity field were made by Manickam & Homsy
(1993, 1994) for rectilinear flows, as well as by Pankiewitz & Meiburg (1999) for the
quarter five-spot configuration. As a final comment, it should be pointed out that the
vorticity-based approach can aid in understanding other extensions as well, such as
the influence of chemical reactions (de Wit & Homsy 1999).

The mutual interactions among all three of the vorticity contributions mentioned,
i.e. viscosity, gravity and permeability components, to our knowledge have not yet been
explored. Their analysis will be at the heart of the present investigation. In addition,
we will focus on the interaction among these components in a finite rectilinear domain.
As will be seen below, the boundary conditions that need to be satisfied as a result
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Figure 1. Principal sketch. An injected fluid 1 displaces a resident fluid 2 of different viscosity
and density in a rectangular domain of height H and length L. Gravity points in the negative
y-direction.

of the finite vertical extent of the flow domain give rise to an additional potential
velocity field that can modify the interaction mechanisms among the different vorticity
components. In order to establish and analyse the role of this potential velocity
field, here (in part 1) we will address two-dimensional diplacements with viscosity
and density contrasts in homogeneous, rectlinear domains. By comparing with the
findings of Rogerson & Meiburg (1993a, b) for the infinite domain, we can thus
evaluate the changes caused by the potential velocity component. Subsequently, part
2 (Camhi, Meiburg & Ruith 2000) extends the scope of the analysis by also including
the effects of the permeability vorticity component. In particular, we will address
such questions as whether or not the resonance mechanism observed in neutrally
buoyant flows maintains its importance in the presence of density differences. It
should be emphasized, however, that the goal of the present work lies not merely
in the presentation of new computational results, but also in the development of
a new perspective from which to interpret earlier numerical findings, in particular
those by Tchelepi (1994). Consequently, this paper is organized as follows: In § 2,
the governing equations, and boundary and initial conditions will be presented and
recast into the vorticity–streamfunction formulation, and the relevant dimensionless
parameters will be identified. Section 3 will give a brief description of the numerical
technique, while § 4 will focus on the computational results and their interpretation
in terms of the dynamically interacting vorticity components. Section 5 will provide
additional discussion and comparisons.

2. Governing equations
We focus on the time-dependent evolution of incompressible miscible displacements

in a rectangular domain such as depicted in figure 1. Assuming that the flow is
governed by Darcy’s law, the dimensional governing equations in the presence of
density differences take the form

∇ · u = 0, (2.1a)

∇p = −µ
k
u− ρg∇y, (2.1b)

∂c

∂t
+ u · ∇c = D∇2c. (2.1c)
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Here, u denotes the velocity, p the pressure, and c the concentration of the displacing
fluid. Viscosity and density are indicated by µ and ρ, respectively, while k represents
the permeability of the porous medium. The gravitational acceleration of magnitude g
is assumed to point in the negative y-direction. The above set of equations, which also
served as the basis for the earlier investigations by Rogerson & Meiburg (1993a, b),
express the conservation of mass, momentum, and species. As a first step in the
computational investigation, only molecular diffusion is accounted for, as expressed
by a scalar diffusion coefficient D. This represents a relatively crude approximation
of the real diffusion and dispersion mechanisms acting at a dynamically evolving
miscible interface inside a porous medium. First of all, even in the absence of any
motion the dependence of the scalar diffusion coefficient on the concentration can
strongly affect the nature of the concentration field (Petitjeans & Maxworthy 1996;
Chen & Meiburg 1996). Furthermore, the effects of flow-induced dispersion (Taylor
1953; Horne & Rodriguez 1983) are typically significant in a porous environment, cf.
the overview given by Brady & Koch (1988). Attempts have been made to account
for such effects by replacing D with a dispersion tensor (Yortsos & Zeybek 1988;
Zimmerman & Homsy 1991; Zhang, Sorbie & Tsibuklis 1997) based on a Taylor-
type model. However, there are indications that this approach still suffers from some
shortcomings, cf. the comparisons between experiments and simulations performed
by Petitjeans et al. (1999) in a Hele-Shaw cell. Since at present there are no dispersion
models available that can properly account for the evolution of miscible flows even
in simple geometries (Petitjeans & Maxworthy 1996; Chen & Meiburg 1996; Yang &
Yortsos 1997; Rakotomalala, Salin & Watzky 1997), we feel that it is best to employ
a scalar diffusion coefficient for now, in order not to obscure the identifiable physical
mechanisms at work.

Both the viscosity and the density are supposed to be known functions of the
concentration, and the permeability k has a given spatial distribution

µ = µ(c), ρ = ρ(c), k = k(x, y). (2.2)

The point permeability is assumed to be isotropic, i.e. k is taken to be a scalar. For
the remainder of this paper, we will furthermore limit ourselves to two-dimensional
homogeneous displacements, so that k = K = const. The two-dimensional case in
which k varies as a function of location will be treated in part 2.

2.1. Scaling considerations

In order to render the governing equations dimensionless, characteristic scales have
to be introduced. A detailed and lucid analysis of the pertinent scaling considerations
for displacements in a domain of finite length L and height H is provided by Tchelepi
(1994). In particular, he points out that in the absence of dispersive and diffusive
effects, scaling of the spatial coordinates (x, y) with the respective dimensions (L,H) of
the flow domain (convective scaling) allows similarity considerations among reservoirs
of different aspect ratios

A =
H

L
. (2.3)

In the presence of diffusive/dispersive effects, however, this similarity cannot be
maintained by either convective or dispersive scaling. Consequently, in order to render
the governing equations dimensionless for the present problem, we take the vertical
extent H of the flow domain as the characteristic length scale in both directions. The
nominal displacement velocity U serves as the velocity scale, so that a time scale
is obtained as H/U. By furthermore scaling viscosity, density, and pressure with µ1,
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ρ2 − ρ1, and µ1UH/K , respectively, where the subscript 1 indicates the displacing
fluid, we obtain the dimensionless form of the governing equations as

∇ · u = 0, (2.4a)

∇p = −µu− Gρ∇y, (2.4b)

∂c

∂t
+ u · ∇c =

1

Pe
∇2c, (2.4c)

where the Péclet number

Pe =
UH

D
(2.5)

can be interpreted as a dimensionless flow rate, and the gravity parameter G has the
form

G =
g (ρ2 − ρ1)K

Uµ1

. (2.6)

It should be pointed out that other, slightly different definitions of gravity parameters
have been used in the literature, e.g. Fayers & Muggeridge (1990). Note that in the
above definition, as a result of using H as the characteristic length scale in both the
x- and y-directions, our definition of the dimensionless parameter that expresses the
relative importance of viscous and gravitational forces differs from the one derived
by Tchelepi (1994) for flows without diffusion and/or dispersion. In addition, he uses
the viscosity difference as the characteristic viscosity, rather than the viscosity of the
injected fluid. Apart from this minor difference, the so-called viscous-to-gravity ratio
J derived by the convective scaling arguments, is related to G as

J ∼ A

G
. (2.7)

By defining the rise velocity of the injected fluid as

V = kg
∆ρ

∆µ
, (2.8)

Tchelepi then interprets J as the ratio of two time scales, tg and tv , respectively

J =
tg

tv
, (2.9)

where tg indicates the time it takes the lighter, injected fluid to rise by a distance
equal to the height of the domain, and tv denotes the time necessary for the mean
displacement to reach the outlet. This scaling argument demonstrates that, under
convective transport only, the aspect ratio of the domain needs to be included when
assessing the relative importance of viscous and gravitational forces, in order to
properly account for gravity segregation effects. It thus becomes obvious that these
are more dominant in longer and thinner domains, where the lighter fluid has more
time to rise to the top. One of the goals of the present investigation is to evaluate
the applicability of these convective scaling arguments in the presence of small, but
non-negligible, amounts of diffusion.

Following other researchers (e.g. Tan & Homsy 1988; Rogerson & Meiburg
1993a, b; Chen & Meiburg 1998a, b), we define

R = −1

µ

dµ

dc
(2.10)

and consider R to be a constant for a given combination of fluids. In this way, the
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viscosity dependence on the concentration has the form

µ(c) = eR(1−c) . (2.11)

Alternatively, other viscosity–concentration relationships, such the quarter-power
blending rule (e.g. Tchelepi 1994 and references therein), could easily be imple-
mented as well. Furthermore, we assume a linear relationship between density and
concentration, so that we can write

ρ =
ρ2

ρ1 − ρ2

+ c. (2.12)

By absorbing the constant term in the density–concentration relationship into the
pressure, Darcy’s law thus reduces to

∇p = −µu− Gc∇y. (2.13)

As discussed above, it is instructive to recast the governing equations into a vorticity
(ω) and streamfunction (ψ) formulation (de Josselin de Jong 1960). Here ψ accounts
only for deviations of the fluid motion from the constant base flow, so that we obtain

ω =
∂v

∂x
− ∂u

∂y
, u = 1 +

∂ψ

∂y
, v = −∂ψ

∂x
. (2.14a–c)

It follows that streamfunction and vorticity are related by the Poisson equation

∇2ψ = −ω. (2.15)

By taking the curl of Darcy’s law, we furthermore obtain

ω = −R∇ψ · ∇c+
G

µ
cx. (2.16)

This equation demonstrates the existence of two vorticity modes, related to viscosity
and density, respectively. Rogerson & Meiburg (1993a, b) investigated the linear and
nonlinear interaction of these two modes in an infinite, doubly periodic domain, i.e.
in the presence of a uniform potential velocity component only. In contrast, the finite
domain considered in the present work will give rise to a spatially and temporally
evolving, non-uniform potential velocity component, by way of the set of conditions
that need to be satisfied along the boundaries of the finite domain, cf. the analysis
below. This potential velocity component will interact with each of the vortical modes,
and thereby it will affect their mutual interaction as well.

Boundary conditions are prescribed as follows:

x = ±0.5/A: ψx = 0, ωx = 0, cx = 0, (2.17a)

y = ±0.5: ψ = 0, cy = 0. (2.17b)

They determine the overall volume flux through the inflow and outflow boundaries
and set the vertical velocity at these boundaries to zero, while allowing the horizontal
velocity u(y) to adjust itself. Alternatively, the condition ψ = 0 could be imposed
at the inflow and outflow boundaries, which would correspond to setting the hori-
zontal velocity component equal to the nominal displacement velocity. For a more
detailed discussion of the relative merits of these boundary conditions, see Tchelepi
(1994). Furthermore, the mass flux across the horizontal boundaries vanishes. Initial
conditions are specified as

ψ(x, t = 0) = ω(x, t = 0) = 0, (2.18a)
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c(x, t = 0) = 0.5

{
1− erf

[(
x+ 0.5/A− 4√

Pe

)√
Pe

]}
. (2.18b)

In this way, a singular initial condition for the concentration at the inflow boundary
is avoided, and instead a continuous concentration profile is prescribed that decreases
from c ≈ 1 at the inflow to c ≈ 0 over a distance of O(Pe−1/2). The profile initially
is centred a small distance 4Pe−1/2 away from the inflow boundary. Perturbations
are imposed at t = 0 by randomly varying this thickness of the initial concentration
profile as a function of the vertical coordinate.

3. Numerical technique
In principle, the problem at hand does not have any intrinsic symmetries that allow

the application of Fourier methods. However, the boundary conditions of vanishing
x-derivatives for streamfunction, vorticity and concentration at x = ±0.5/A enable us
to employ a Galerkin-type discretization using cosine expansions for these variables
in the streamwise direction:

ψ(x, y, t) =
∑
k

ψ̂k(y, t) cos [k α (x+ 0.5/A)], (3.1a)

ω(x, y, t) =
∑
k

ω̂k(y, t) cos [k α (x+ 0.5/A)], (3.1b)

c(x, y, t) =
∑
k

ĉk(y, t) cos [k α (x+ 0.5/A)], (3.1c)

with

|k| < N1

2
, α = 2πA, (3.2)

where N1 is the number of grid points in the longitudinal direction. This type of
Fourier–Galerkin scheme is very attractive to use in the present context, since it
allows a fast and efficient solution of the Poisson equation for the streamfunction.
The time integration is fully explicit and utilizes a third-order Runge–Kutta procedure
(Wray 1991), so that by writing the concentration equation as

∂c

∂t
= F(c), (3.3)

we obtain

cki,j = ck−1
i,j + ∆t

[
γkF

(
ck−1
i,j

)
+ ηkF

(
ck−2
i,j

)]
, (3.4)

where

γ1 = 8
15
, η1 = 0, (3.5a)

γ2 = 5
12
, η1 = −17/60, (3.5b)

γ3 = 3
4
, η1 = −5/12. (3.5c)

The evaluation of the nonlinearity at each time level is performed in a pseudo-spectral
manner (cf. Canuto et al. 1988). This involves a forward Fourier transform of the
velocity components and the vorticity, the computation of the nonlinear products in
real space and the backward transform of the products to wavenumber space. For
the differentiation in the normal direction, we employ compact finite differences in
the form given by Lele (1992), which are of sixth order in the interior of the flow
domain. More details on the implementation of these schemes for miscible porous
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media flows are provided by Meiburg & Chen (2000), Chen (1998), as well as Chen &
Meiburg (1998a, b). It should be noted that, in contrast to many schemes based on the
velocity and pressure variables, the mass conservation properties are not a concern
for the present approach, since the formulation of the governing equations in terms of
vorticity and streamfunction satisfies the continuity equation identically. The time step
is continuously adjusted so that it always satisfies both the CFL-condition, as well as
the limitations caused by the diffusive terms. The simulations to be discussed below
typically employ discretizations of 1024× 512 grid points. The code was validated by
comparing the growth rates of small perturbations with the respective values obtained
from linear stability theory, in the absence of density differences. For a comparison
between purely spectral and mixed spectral/compact finite difference simulations of a
different class of flows, the reader is referred to Härtel, Meiburg & Necker (2000). The
data presented there confirm that the mixed approach yields results of an accuracy
that is comparable to the purely spectral approach.

4. Results
In the following, we will commence by describing the temporal and spatial evolution

of a typical flow, which can subsequently serve as a reference case when discussing the
effects of variations in the individual parameters. At first, the simulation results will
serve to identify the dominant mechanisms in qualitative terms. Subsequently, several
quantitative measures of the flow evolution will be introduced, and their dependence
on the values of the governing parameters will be discussed.

4.1. Reference case

As representative reference case, a displacement is selected for which the dimensionless
parameters have values of Pe = 2000, G = 1, R = 3, and A = 0.5. This value of
Pe is near the upper limit of what can be resolved with the present grid. The other
parameter values were chosen in order to demonstrate many of the mechanisms that
govern displacements with density variations.

Figure 2 shows time sequences of the concentration fields for the reference case.
Soon after the start of the simulation, numerous small fingers can be seen to develop.
However, even though the flow remains predominantly horizontal, the comparatively
thin finger at the top of the domain quickly outgrows all others and subsequently
develops into a narrow gravity tongue that increasingly dominates the flow. It even-
tually results in the breakthrough of the flow at the early time of t = 0.530, however,
not without undergoing some interesting and complex interactions with other fingers
evolving in the flow. While the emergence of further viscous fingers, and their growth
to large amplitudes, is not completely prevented, these fingers have barely reached
the halfway point in the x-direction by the time of breakthrough. Nevertheless, they
display an interesting dynamic behaviour of their own, involving several examples
of spreading, shielding, and merging. Of particular interest is the interaction of the
gravity tongue with the finger directly below it.

Around t = 0.2 this finger approaches the gravity tongue from below, thereby
temporarily pinching it and reducing its supply of less-viscous fluid. This is reflected
in a transient slowdown of the tip of the gravity tongue, cf. figure 3. In this process,
the tip of the finger below the gravity tongue spreads laterally, and between t = 0.2
and 0.3 its upper part merges with the gravity tongue, while its lower part proceeds
downward and away from the gravity tongue. This partial merger replenishes the fluid
supply of the gravity tongue. However, around t = 0.4 and 0.5 additional pinchings
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Figure 2. Reference case: Pe = 2000, G = 1, R = 3, and A = 0.5. Concentration field at times
t = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.530. In addition to numerous interacting fingers, a narrow gravity
tongue evolves that results in an early breakthrough of the injected fluid.

and subsequent partial mergers can be observed, suggesting that these events occur
repeatedly in an almost periodic fashion. Similar interactions between the gravity
tongue and the finger immediately below it, involving pinching as well as partial
or complete merging, were observed in the particle tracking simulations of Tchelepi
(1994), as well as in the experiments and finite difference simulations of Christie et al.
(1990). It is of interest to observe that the two dominant fingers in the central region
of the domain proceed predominantly in the horizontal direction, with at most a very
small upward velocity component. This indicates that for the present value of G = 1,
the density differences are unable to generate strong vertical velocities in the mixing
zone, i.e. the zone dominated by viscous fingering. Consequently, the bulk of the
vertical fluid transport appears to occur in the unmixed regions ahead of and behind
the fingering zone, rather than through fingers with substantial angles of inclination.
This is also confirmed by the corresponding streamline patterns presented in figure 4,
which indicate a moderate slope of the streamlines both upstream and downstream
of the mixing zone. The contour plots for the two vorticity components at t = 0.5
(figure 5) indicate a layered structure inside the fingers due to the viscous component,
along with a mushroom structure at the heads and tails of the dominant fingers, due
to the gravitational component. With regard to the above observations, however, one
has to keep in mind that the parameter values characterizing the transitional regime
between gravity- and fingering-dominated flows change when three-dimensional effects
are taken into account (Tchelepi 1994). Thus, there is a strong motivation to extend
the current investigation to three dimensions.
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Figure 3. Reference case: tip velocity of the gravity tongue as a function of time. The periodic
slowdown and speedup phases reflect the interaction of the gravity tongue with the finger immedi-
ately below it. The large negative spike around t = 0.375 reflects the fact that the concentration in
the tip of the gravity tongue temporarily drops below the threshold value of 0.5, which serves to
establish the tip location.

0.5

0

–0.5
–1.0 –0.5 0 0.5 1.0

xy

Figure 4. Reference case: streamfunction contours at time t = 0.5. The streamlines have a modest
slope in the regions ahead of and behind the front, indicating that the bulk of the vertical fluid
transport occurs outside the fingering zone.
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Figure 5. Reference case: vorticity contours at time t = 0.5. The layered structures along the
length of the fingers, are due to the viscous vorticity component.

4.1.1. Vorticity considerations

In order to understand the mutual interaction between the evolving viscous fingers
and the flow component induced by gravity, it is instructive to focus on the respective
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vorticity components. When integrating the gravitational vorticity component

ωG =
G

µ
cx (4.1)

over the entire flow domain S , it becomes clear immediately that due to the constant
concentration values far ahead of and behind the front, the resulting gravitational
circulation

ΓG =

∫
S

ωG dS =
G

ReR

∫
S

∂

∂x

(
eRc
)

dS = −G
R

(
1− e−R

)
(4.2)

is independent of time. Note that, by expanding e−R into a power series, it is easily
shown that for R = 0 one obtains ΓG = −G. In a global sense, the tendency of
the velocity field associated with the gravitational vorticity component to rotate or
tilt the concentration field thus remains active at a roughly constant level for all
times, independent of Pe and A. As a result, the accumulated effect of gravity on
the concentration field, as expressed by a time integral over the gravitational vorticity
component, will grow proportionally to time. For this reason, the effects of gravity
should become increasingly obvious for longer times. The above line of reasoning is
confirmed, for example, by the numerical observations of Tchelepi (1994), who points
out the crucial role of the domain aspect ratio, i.e. of the overall displacement time,
in determining the transition from fingering to gravity-dominated flow.

For the viscous vorticity component

ων = R
(−ucy + vcx

)
(4.3)

a corresponding exact analytical integration cannot be performed. However, some
qualitative insight can still be gained from approximate estimates. The viscous vorticity
component is limited to those regions in which the concentration varies, i.e. along the
miscible interface between the two fluids. Once the fingers have reached a significant
amplitude, most of the interface will be oriented in the streamwise x-direction, so that
the first term in equation (4.3) dominates. This term indicates that negative vorticity is
located along those interfacial sections where the lighter, displacing fluid moves above
the heavier, displaced fluid, and vice versa. In a neutrally buoyant displacement, there
will be approximately equal lengths of interfacial segments with positive and negative
vorticity, respectively, and as a result the viscous circulation

Γν =

∫
S

ων dS (4.4)

will be close to zero. This will no longer hold if buoyancy effects are sufficiently strong
to create a gravity tongue, such as in the reference flow discussed above. In such cases,
as a result of the effects of the gravitational circulation, interfacial sections along which
lighter fluid moves above heavier fluid will dominate, and consequently there will be
more negative than positive viscous vorticity. In this way, the gravitational vorticity
strengthens the viscous vorticity component that is of the same sign, while weakening
the component of opposite sign.

This is clearly visible in figure 6, which separately shows the overall negative and
positive circulation components in the flow field, along with their sum. The value of
this sum initially is entirely due to the gravitational circulation. However, its sub-
sequent growth reflects the effect described above of the gravitational vorticity on
the respective viscous vorticity components. It thus provides us with a quantitative
measure to diagnose whether or not gravitational effects are becoming dominant. In
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Figure 6. Reference case: the temporal evolution of the negative and positive circulation components
in the flow field, as well as their sum. The initial value of this sum is entirely due to the gravitational
circulation. The value of the gravitational circulation component remains constant for all times, so
that the growth of the sum reflects the amplification (damping) of the negative (positive) component
of the viscosity circulation by the gravitational component.

this context, it is furthermore important to point out that this interaction between
the gravitational and viscous circulations is one-way in nature, as far as the overall
gravitational circulation is concerned. In other words, while the gravitational circula-
tion affects the magnitude of the respective viscous components, there is no reverse
effect, since the magnitude of the gravitational circulation is constant and cannot be
changed by the actions of the viscous circulation. However, the local distribution of
the gravitational vorticity might of course very well be affected by the viscous vortic-
ity component. The above considerations regarding the quantitative evolution of the
vorticity field will have to be modified if the porous medium exhibits inhomogeneities,
cf. the corresponding analysis in part 2. These inhomogeneities will result in a third
contribution to the scalar vorticity, whose influence on and interaction with the above
two components will be analysed in detail. Furthermore, these interactions become
significantly more complicated in three-dimensional displacements, where the vortic-
ity variable is a vector whose three components are governed by different respective
interactions of the various physical mechanisms.

4.1.2. Potential velocity field

The emergence of a gravity tongue represents an important feature in many porous
media flows dominated by gravity, as it can result in the early breakthrough of
the displacing fluid. Interestingly, such a gravity tongue was not observed in the
simulations by Rogerson & Meiburg (1993b), which were performed in a domain of
infinite extent in both the horizontal and the vertical directions. In this context, it is
important to appreciate that the dynamical evolution of the flow is governed not only
by the interacting vorticity components, but also by their interplay with the potential
velocity field. This potential velocity field, in turn, consists of the constant uniform
base flow plus an additional time-dependent contribution that is generated by the
horizontal boundaries in order to enforce the condition of vanishing normal flow.
The role of this potential velocity component, which was absent in the simulations of
Rogerson & Meiburg (1993b), will now be discussed. Consider the model situation in
which the reservoir is infinite in the horizontal direction and extends from y = −0.5
to y = 0.5 in the vertical direction. Assume that the two fluids of different densities
and viscosities are initially separated by a sharp vertical interface at x = 0. In the
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Figure 7. (a) Streamfunction due to a constant vertical vortex sheet located at x = 0 inside a
horizontally infinite domain that extends from y = −0.5 to y = 0.5 in the vertical direction. (b)
Streamfunction component due to the same vortex sheet in a vertically infinite domain. (c) Potential
streamfunction component inside the vertically finite domain due to all of the image vortex
sheets outside the domain, or equivalently, due to the presence of the horizontal boundaries. (d)
Superposition of the streamfunction shown in (a) with a uniform net displacement in the x-direction.

absence of any net horizontal displacement, the pressure and velocity fields during
the ensuing rotation of the interface were analysed by Verruijt (1980). From the
governing equations, it follows immediately that the initial vorticity field corresponds
to a constant-strength vortex sheet at x = 0

ω0(x, t = 0) = ∆V δ(0), (4.5)

where ∆V is the vertical velocity jump across the interface caused by the density
difference, and δ represents the Dirac delta function. C. Härtel (1997, personal
communication) showed that this initial vorticity field results in the streamfunction

ψ(x, y, t = 0) =
2∆V

π2

∞∑
k=0

(−1)k

(2k + 1)2
e−(2k+1)π|x| cos [(2k + 1) πy] (4.6)

shown in figure 7(a).
As is well known from potential flow theory, for the present set of symmetry

conditions at the top and bottom boundaries, which allow for slip but not for a normal
velocity component, this streamfunction is the result of two contributions from the
vorticity field: the constant-strength vortex sheet inside the domain (corresponding
streamfunction shown in figure 7b), and all of the image vortex sheets above and
below the domain needed to satisfy the symmetry conditions (related streamfunction
depicted in figure 7c). The contribution of the image vortex sheets in effect takes
the form of a potential flow field inside the domain, which can be attributed to the
existence of the horizontal boundaries at y = ± 0.5.

As can be seen in figure 7(c), for the present case of a uniform net displacement this
potential velocity field adds a horizontal flow component to the average displacement
velocity near the top of the domain. In the presence of an unfavourable viscosity
contrast it effectively strengthens locally the unstable nature of the displacement
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process and thereby encourages the formation of a dominant viscous finger at the top
of the domain. This is also reflected by figure 7(d), which is obtained by superimposing
the uniform net displacement in the x-direction on the flow shown in figure 7(a). Thus,
we can attribute the emergence of the gravity tongue to the interaction of the potential
velocity field generated by the boundaries with the unstable viscosity gradient. Hence
the rapid growth of the gravity tongue is caused by the same principal interaction
mechanism of a potential flow with an unstable viscosity gradient as the basic
fingering instability. In a sense, the boundaries effectively ‘focus’ the effects of the
unstable viscosity gradient and the density jump on a narrow region just below the
top boundary. This focusing mechanism is clearly visible in figure 7(d). The important
role of the viscosity contrast is also demonstrated by a comparison of the local flow
features near the top and the bottom of the domain. In the absence of a viscosity
contrast, i.e. for R = 0, these two flow regions would be symmetric to each other. The
fact that no gravity tongue evolves near the bottom reflects the fact that there the
potential flow component interacts with a stable viscosity gradient.

4.2. Influence of gravity parameter G

It is instructive to compare the above reference case to a simulation for Pe = 2000,
G = 0, R = 3, and A = 0.5, with identical initial perturbations. Concentration plots
are shown for different times in figure 8. Interestingly, up to the time when the case
of G = 1 breaks through, the two flows are nearly identical to each other throughout
the interior of the domain, with the only significant differences occurring near the top,
where for G = 1 the gravity tongue emerged, and much smaller deviations near the
very bottom of the fingering zone. This confirms that for G = 1, the combined effects
of unfavourable viscosity contrast and density difference focused on a narrow layer
near the top boundary, without significantly affecting the shape, direction, or dynamics
of the dominant fingers in the central domain. Scaling results for the thickness of the
gravity tongue produced in this narrow layer will be presented below. Instead, the
gravitational forces effectively cause small vertical velocities throughout widespread
regions of unmixed fluid covering the entire vertical extent of the reservoir. The
vorticity contours also (figure 9) confirm that substantial differences between the two
flows are limited to the regions near the top and bottom boundaries of the reservoir.

Two cases that fall in between the two flows discussed above are shown in figures
10 (G = 0.25) and 11 (G = 0.5), with all other parameters left unchanged. Together
with the neutrally buoyant flow in figure 8 and the reference case in figure 2, these
illustrate the gradual transition from a flow without density effects to one dominated
by a gravity tongue. For the smaller value of the gravity parameter (G = 0.25), a
weak finger is seen to emerge at the top of the reservoir. However, it fails to achieve
a dominant role by the time of breakthrough. It seems possible that this finger
would eventually develop into a full-scale gravity tongue if the reservoir were longer.
Alternatively, the more advanced finger in the central domain might grow towards
the top and eventually take over the role of a gravity tongue in a longer reservoir.
This issue is resolved by a corresponding calculation for the aspect ratio A = 0.25,
which indicates that the finger growing along the top of the reservoir indeed develops
into a dominant gravity tongue, see figure 12.

The overall sum of the positive and negative circulation components for the
different flows is depicted in figure 13. It can be seen that this overall circulation
tends to grow with time for all values of G, as long as G > 0. This suggests that the
continued amplification of the negative component of the viscosity-related vorticity by
the gravitational circulation component will inevitably lead to the eventual emergence
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Figure 8. Pe = 2000, G = 0, R = 3, and A = 0.5: concentration field at times t = 0.1, 0.3, 0.5, 0.7,
0.9, and 0.984. In the interior of the domain, this neutrally buoyant flow develops nearly identically
to the gravity-dominated reference case. This indicates that in the reference case, the effects of
buoyancy are effectively limited to the narrow flow regions near the top and bottom of the domain.
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Figure 9. Pe = 2000, G = 0, R = 3, and A = 0.5: vorticity contours at time t = 0.5. Differences
compared to the reference case are limited to narrow regions near the top and bottom of the flow
domain.

of a gravity tongue, provided that a sufficient amount of time is available, i.e. that
the domain is long enough. However, we also observe that, as long as no dominant
gravity tongue has emerged yet, the circulations for the cases G = 0.125, 0.25, and 0.5
develop very similarly to each other, which reflects the fact that for these parameters
significant differences in the concentration fields are limited to narrow regions near
the top and bottom boundaries.

Regarding the transition from a neutrally buoyant flow dominated by viscosity
effects to one characterized by a strong gravity tongue, it is furthermore interesting to
note that by the time of breakthrough the case G = 0.25 (figure 10) displays more tip
splittings than the case G = 0 (figure 8). While the number of splitting events in these
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Figure 10. Pe = 2000, G = 0.25, R = 3, and A = 0.5: concentration field at times t = 0.3, 0.5, 0.7,
and 0.984. At this weak level, gravitational effects do not result in the formation of a dominant
gravity tongue by the time breakthrough occurs.
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Figure 11. Pe = 2000, G = 0.5, R = 3, and A = 0.5: concentration field at times t = 0.3 and 0.815.
Here a gravity tongue forms that results in an early breakthrough.
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Figure 12. Pe = 2000, G = 0.25, R = 3, and A = 0.25: concentration field at time t = 1.4. This
simulation indicates that in a longer domain, the finger growing along the top of the reservoir in
figure 10 develops into a dominant gravity tongue.

flows is too small to be statistically significant, we did observe the same trend for
other parameter combinations. We suspect that small amounts of cross-flow induced
by moderate density differences are responsible for this tendency towards increased
tip splitting. For large density differences, of course, both the fingering itself, as well
as the tip splitting, becomes less prominent.

For G = 2 and G = 4, with all other parameters left unchanged, the cumulative
effect of the distributed gravitational vorticity is substantially stronger, which in turn
generates a larger potential velocity component as a result of the no-flux boundary
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Figure 14. Pe = 2000, G = 2, R = 3, and A = 0.5: concentration field at times t = 0.1 and 0.387.
At this high level of gravitational forces, a dominant gravity tongue quickly forms. Nevertheless,
vigorous fingering still occurs across the entire displacement front.

conditions. Consequently, the gravity tongue is seen to develop more rapidly, cf. figures
14 and 15. Furthermore, it is seen to increase in thickness with time, in agreement
with the findings of Tchelepi (1994). At the same time, the frontal sections near
the bottom of the reservoir are slowed by the potential velocity, and they advance
more slowly from the outset. In this way, the front gradually tilts and develops a
globally inclined shape. At these large gravitational parameter values, the effect of the
potential velocity component is no longer limited to the regions next to the upper and
lower borders. Instead, it extends all the way into the central regions of the reservoir.
Figure 7 shows that this potential velocity field has a free stagnation point near the
centre of the reservoir, which contributes to the tilting of the mixed zone.

As the less-viscous fluid increasingly flows through the gravity tongue, the mean
displacement velocity of the front in the remainder of the reservoir is reduced, thereby
leading to a marked slowdown in the growth of the fingers. This is also reflected by
the streamfunction plot (figure 16), whose equidistant contours indicate that a large
fraction of the mass flux occurs near the top boundary. An increasing number of
the finger tips can be seen to curve upward, at least in part due to the buoyancy
forces they experience. This reflects a growing tendency towards the development of
‘diagonal fingering’ (Rogerson & Meiburg 1993b), i.e. the emergence of significant
vertical velocities even within the fingering zone.

If gravitational effects increase further, the sections of the front below the gravity
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Figure 15. Pe = 2000, G = 4, R = 3, and A = 0.5: concentration field at times t = 0.1 and 0.270. As
the lighter and less-viscous fluid increasingly flows through the gravity tongue, the fingering in the
central regions of the domain slowly decreases in strength, due to the reduced effective displacement
velocity.
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Figure 16. Pe = 2000, G = 4, R = 3, and A = 0.5: streamfunction contours at time t = 0.270. A
relatively large fraction of the displacing fluid flows through the gravity tongue, thereby reducing
the effective displacement velocity of the rest of the front.
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Figure 17. Pe = 2000, G = 10, R = 2.5, and A = 0.5: concentration field at time of breakthrough
t = 0.230. Fingering below the gravity tongue is largely suppressed at this high value of G. Near
the bottom boundary, there is an area of reverse flow.

tongue gradually stabilize due to the decreasing effective displacement velocity of
these parts of the front, as well as to the shear stabilization mechanism described by
Rogerson & Meiburg (1993a, b), cf. figure 17 for Pe = 2000, G = 10, R = 2.5, A = 0.5.
The tilting of the front now proceeds so rapidly that a reverse flow occurs near the
bottom of the reservoir, where the front propagates towards the injection well.

4.3. Influence of viscosity parameter R

The case Pe = 2000, G = 1, R = 2, and A = 0.5 illustrates the role of the viscosity
contrast, cf. figure 18. When compared to the reference case shown in figure 2, the
fingering during the earlier stages is seen to be somewhat less vigorous at this lower
value of R, i.e. fewer fingers emerge, and they develop more slowly. Since both linear
stability theory (Rogerson & Meiburg 1993a) as well as nonlinear simulations (Roger-
son & Meiburg 1993b) for displacements perpendicular to the direction of gravity in
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Figure 18. Pe = 2000, G = 1, R = 2, and A = 0.5: Concentration field at times t = 0.1, 0.3, 0.5,
0.613. While the fingering is less vigorous at this reduced viscosity contrast, the front develops an
overall inclination more rapidly than for R = 3.

infinite domains, predict lower growth rates and larger instability wavelengths for re-
duced viscosity contrasts, this behaviour is in line with expectations. We furthermore
notice that the gravity tongue is thicker, and that it proceeds somewhat more slowly
for the lower value of R. This underlines that both size and propagation velocity of
the gravity tongue are governed by similar mechanisms to the usual viscous fingering
resulting from an instability. Interestingly, the global tilting of the mixed zone is
more pronounced than for the case R = 3. The reason for this can be traced back
to the vorticity equation (2.16). It states that the gravitational vorticity component,
which drives the tilting of the front, is inversely proportional to the local viscosity
value. Since the dimensionless viscosity varies between 1 and eR , the integral over
the gravitational vorticity component, i.e. the gravitational circulation, will be larger
for R = 2 than for R = 3, as long as G remains unchanged. This is in contrast to
the viscosity-related vorticity component, which grows with R. In summary, as R gets
larger for constant G, we expect the fingering to increase in strength, but the angle of
inclination of the mixed zone should grow more slowly.

The above line of reasoning is confirmed by the simulation of the case Pe = 2000,
G = 1, A = 0.5, and R = 0.25, see figure 19. For this very small viscosity contrast, the
entire interface tilts quite rapidly, while no fingering instability is observed.

4.4. Influence of dimensionless flow rate Pe

Figure 20 depicts the evolution of the flow for Pe = 500, G = 1, R = 3, and A = 0.5.
Fewer and wider fingers emerge at this lower Pe-value in comparison to the reference
case, and they grow more slowly. The pronounced gravity tongue developing along the
top of the domain is wider than in the reference case as well, in line with the general
trend that larger Pe-values result in a reduction of the dominant lateral length scale.
This finding also agrees with earlier observations by Tchelepi (1994), who investigated
the influence of the transverse Péclet number on the shape and propagation velocity
of the gravity tongue. It is interesting to note that in the present simulations the
gravity tongue, in spite of emerging later at Pe = 500, subsequently propagates at
nearly the same velocity as for Pe = 2000. Since for Pe = 500 the fingers below the
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Figure 19. Pe = 2000, G = 1, R = 0.25, and A = 0.5: concentration field at times t = 0.1 and 0.5.
At this very small value of R, no fingering occurs, but the global tilting of the front proceeds very
quickly.
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Figure 20. Pe = 500, G = 1, A = 0.5, and R = 3: concentration field at times t = 0.3 and 0.5. At
this lower Pe-value, the fingers are thicker and spaced more widely apart. As a result, the dynamic
interaction observed at Pe = 2000 between the gravity tongue and the finger immediately below it
is absent here.

gravity tongue grow more slowly, and since they are also spaced more widely than
for Pe = 2000, the interactions between the gravity tongue and the finger below it are
absent at this smaller Pe-value, at least for the present value of the aspect ratio. The
breakthrough occurs at nearly identical times for the two Pe-values. This behaviour
indicates that, at least for R = 3, the breakthrough time does not depend strongly on
the value of Pe, as long as a gravity tongue evolves.

An intermediate case is shown in figure 21 for Pe = 1000, G = 1, R = 3, and
A = 0.5. While initially fewer fingers develop than in the reference case, some of the
same interactions between the gravity tongue and the neighbouring finger can be
observed. At later times, multiple mergers take place in the centre of the domain, so
that very few large-scale fingers survive until the time of breakthrough.

4.5. Influence of aspect ratio A

Figure 22 shows the evolution of the displacement for Pe = 500, G = 1, R = 3,
and A = 0.125. At time t = 0.5, the concentration field is still nearly identical to
the case of A = 0.5 discussed above, for which breakthrough was observed shortly
thereafter. This indicates that the downstream boundary of the domain does not have
an appreciable effect on the dynamics of the fingering process until just before the
leading finger reaches this boundary. This finding is in agreement with observations
made by Tchelepi (1994). For t > 0.8, we observe interactions of the gravity tongue
with the neighbouring finger that are quite similar to those described earlier for
Pe = 2000. Pinching and partial merging events are clearly visible. This indicates that
the same mechanisms are active at these lower Pe-values, but only after a longer
time, so that they may manifest themselves only in smaller aspect ratio geometries.
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Figure 21. Pe = 1000, G = 1, A = 0.5, and R = 3: concentration field at times t = 0.2, 0.3, and
0.544. The gravity tongue strongly interacts with the finger next to it, while multiple mergers occur
in the centre of the domain.
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Figure 22. Pe = 500, G = 1, A = 0.125, and R = 3: concentration field at times t = 0.5, 1, 1.6, 2.434.
In this longer domain, interactions between the gravity tongue and the finger below it occur that
are similar to those observed for A = 0.5 and Pe = 2000.

Since this observation was also made for other parameter combinations, it suggests
that the aspect ratio should enter into scaling arguments such as those proposed by
Tchelepi (1994), even when diffusive or dispersive effects are present.

4.6. Quantification of the global displacement features

4.6.1. Transversely averaged concentration profiles and mixing zone length

For many practical applications involving porous media displacements, it is highly
desirable to develop essentially one-dimensional models that are able to predict
accurately the spatio-temporal evolution of the concentration profile averaged in
the transverse direction. Towards this end, several researchers have investigated the
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Figure 23. Transversely averaged concentration profiles for Pe = 2000, R = 3, A = 0.5, and
G = 0, 0.125, 0.25, 0.5, 1, 2, and 4 at the time of breakthrough. In those flows that are dominated by
a gravity tongue, the wiggly plateau known from neutrally buoyant displacements is preceded by
another, much lower plateau that reflects the narrow gravity tongue.

properties of such averaged profiles as a function of the governing parameters.
In the absence of density variations, Tan & Homsy (1988) found that for small
initial perturbations, these transversely averaged concentration profiles at first evolve
according to a one-dimensional convection–diffusion equation. During this phase
the mixing length, defined as the distance between the locations where the averaged
concentration profile takes the values of 0.1 and 0.9, respectively, grows proportionally
to t1/2. However, soon a plateau-like zone evolves that reflects the averaged properties
of the fingering zone, and from then on the mixing length is observed to grow linearly
with time. Interestingly, for large Pe the length of the mixing zone becomes nearly
independent of Pe.

Figure 23 shows how the transversely averaged concentration profile at the time of
breakthrough changes with G for Pe = 2000, R = 3, and A = 0.5. For G = 0, 0.125,
and 0.25, the profiles look quite similar to those obtained by Tan & Homsy (1988),
in that they display a wiggly, plateau-like region with values in the range 0.1 to 0.2,
followed by a region of steep incline in which the value rises to 1. However, for
G = 0.5 and 1, respectively, this plateau region is preceded by another, much lower
region that reflects the existence of the gravity tongue. For the case G = 0 models
have been derived that allow the prediction of the breakthrough time, cf. Tan &
Homsy (1988) and references therein. However, for G 6= 0, such predictive models do
not exist. In order to develop them, it is of interest to derive the relevant scaling
laws that establish how this tongue’s properties vary with the governing dimensionless
parameters. In particular, we are interested in the thickness d of the tongue, which we
consider to be given by the value of the concentration plateau when such a plateau
exists. By measuring and comparing the tongue thickness for different G-values in
simulations with constant R, Pe, and A, we found that d ∝ G1/2. In a similar fashion,
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it was found that d ∝ Pe−1/2. For R, we did not observe such a uniformly valid law.
While the thickness of the gravity tongue always decreased with increasing R, the
exact quantitative dependence varied with G and Pe. The observed scaling

d ∝
(
G

Pe

)1/2

(4.7)

can be interpreted as follows (Homsy 2000). In dimensional quantities, it leads to

d ∝
(
V

U

)1/2(
DH

U

)1/2

(4.8)

which suggests that the early formation of the tongue is governed by the ratio
V/U, whereas its subsequent temporal evolution is dominated by diffusion. This
interpretation is consistent with the above description of the two components of
the potential velocity field, i.e. the uniform base flow and the constribution due to
the horizontal boundaries. The strength of the focusing effect responsible for the
formation of the gravity tongue is determined by the relative magnitude of these two
components, i.e. by V/U.

4.6.2. Breakthrough time

For applications such as enhanced oil recovery, a crucial parameter is the break-
through time, which we define as the time when the outflow boundary first sees a local
concentration value of 0.5. It should be pointed out that there are also alternative
definitions of breakthrough that take into account the averaged concentration at
the outflow. Directly related to the breakthrough time is the recovery rate, which
indicates the percentage of the displaced fluid pushed out of the domain by the time
breakthrough occurs.

Figure 24 depicts the dependence of the recovery on G for different values of R,
at Pe = 2000 and A = 0.5. For this relatively short reservoir, there is not sufficient
time for a dominant gravity tongue to develop for small values of G. As a result,
there is a small plateau-like region near G = 0, for which the breakthrough recovery
does not depend on G. Interestingly, the size of this plateau region depends on the
value of R. For G = 0.25, the R = 2 case develops a gravity tongue and consequently
breaks through earlier than the R = 2.5 flow, for which a gravity tongue does not
form. This indicates a dependence on R of the G-value at which the transition from
fingering-dominated to gravity-dominated flow occurs, in line with observations by
Tchelepi (1994).

For larger values of G, however, the recovery quickly drops, due to the rapid forma-
tion of a dominant gravity tongue that results in earlier breakthrough. Interestingly,
over the fairly large range of G-values investigated here, an increase in R from 2 to 3
cuts the recovery by approximately the same number of percentage points. The same
behavior is observed for Pe = 500, cf. figure 25.

4.6.3. Growth of interfacial length

In many practical applications, important mechanisms such as, for example, chem-
ical reactions (De Wit & Homsy 1999) are active in the interfacial region of the
flow field where the two phases are in contact with each other. As a result, it is of
interest to track the growth of this interfacial area. Strictly speaking, of course, a
sharp interface does not exist between two miscible fluids. However, Chen & Meiburg
(1998a) showed that the evolution of the interfacial length l(t) in a two-dimensional
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For these moderate values of G, the growth of l(t) is nearly independent of G.

flow can be monitored as

l =

∫
S

(
c2
x + c2

y

)1/2
dS. (4.9)

For the case of a stably propagating front, l = 1 for all times. For Pe = 2000 and A =
0.5, figure 26 depicts the interfacial growth for R = 3 and G = 0, 0.125, 0.25, 0.5, 1, 2,
and 4.

Interestingly, for these large Pe-values and moderate values of G, the growth of l(t)
is largely independent of G, since in all cases a vigorous fingering activity develops.
However, further simulations for other parameter combinations show that at very
large G-values the rapid growth of the gravity tongue cannot make up for the loss
of interfacial growth due to the reduced fingering, so that the overall growth of l(t)
slows down markedly.

4.6.4. Global tilting of the mixed region

It is desirable to quantify the overall ‘tilt’ of the mixed region due to the density
differences. Towards this end, we compare the actual concentration field c(x, y, t) with
the one-dimensional reference field c0(x, t) that would be obtained at the same time
for a stably propagating front in the absence of density differences and diffusion. This
reference profile thus has the same thickness as the actual profile at the beginning of
the simulation. We can then define the quantity Ω(t)

Ω =

∫
S

β(y) [c(x, y, t)− c0(x, t)] dS, (4.10)

where

y > 0: β = 1, (4.11a)
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y < 0: β = −1. (4.11b)

A value of Ω larger (smaller) than zero indicates a global tilting of the interfacial
region in the clockwise (counterclockwise) direction.

Figure 27 indicates that, approximately, Ω ∝ G during the early stages. Very early
on, Ω(t) is seen to grow more rapidly for larger Pe, which reflects the faster formation
of a gravity tongue. For longer times, however, smaller Pe display larger Ω-values, as
a result of the increased thickness of the tongue at lower Pe.

Figure 28 displays the dependence of Ω(t) on R. For positive R-values, the graphs
confirm our earlier qualitative observation that global tilting proceeds more slowly
with increasing R, since the gravitational circulation is reduced. For comparison, we
also include a stable case R = −1. In this case, the density field promotes global
tilting, whereas the viscosity field favours a straight vertical interface. After an initial
transient, the competition between the two effects leads to a reduced tilting rate.

4.6.5. Rate of propagation of finger tip

Figure 29 shows the tip location of the most advanced finger, defined as the
largest x-location with a concentration value above 0.5, as a function of time for a
variety of parameter combinations and Pe = 2000. The results for G = 0 confirm
earlier findings for flows without density differences (cf. Tan & Homsy 1988; Tchelepi
1994) by showing that after an initial transient the most advanced finger propagates
with a constant velocity that increases with R. This behaviour does not persist in the
presence of density differences that are sufficiently strong to result in the emergence of
a gravity tongue. Here, after an initial transient acceleration phase, the gravity tongue
reaches a maximum velocity. Subsequently, it is seen to slow down somewhat, but a
renewed acceleration can occur as well. This reflects the time-dependent variations in
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the supply of less-viscous fluid to the gravity tongue, as had been observed to occur
for some parameter combinations. These variations affect the unfavourable viscosity
gradient at the tip of the tongue and cause it to fluctuate with time. Both pinching by
the neighbouring finger as well as lateral diffusion along the length of the tongue can
reduce this supply, while a partial merger with the neighbouring finger can replenish
it. The sudden jump seen in the graph for G = 1 and R = 3 results from such a
pinching event, which caused the maximum concentration at the tip of the gravity
tongue to drop below the value of 0.5. However, the long-term propagation rate of
the finger tip approaches a constant value again. This finding again is in agreement
with observations by Tchelepi (1994).

An interesting phenomenon can be observed during the initial transient acceleration
phase, cf. figure 30, which represents a detail of figure 29. It can be seen that for G = 1
the gravity tongue in the R = 2 displacement initially accelerates more rapidly than for
larger R-values. While this behaviour is reversed later, it is nevertheless noteworthy,
since it is in contrast to observations for the growth of the most advanced finger
when G = 0. The key to understanding this behaviour again lies in the vorticity
equation (2.16). At early times, when the front is still approximately one-dimensional,
the viscosity-related vorticity component is still quite small, since both cy and v are
small. The gravity-related vorticity component, on the other hand, is strong from the
very beginning. However, the larger R is, the larger µ will be on average across the
front. Since µ appears in the denominator of the gravity-related vorticity, the latter
will be larger for smaller R, i.e. the overall tilting due to gravity will proceed more
quickly. Soon, however, this leads to deviations in the overall frontal shape, so that
eventually the viscosity-related vorticity will take over.
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Figure 29. Tip location of the most advanced finger as function of G and R for Pe = 2000 and
A = 0.5. In contrast to neutrally buoyant displacements, the tip velocity in flows dominated by a
gravity tongue usually does not approach a constant value. This is due to variations in the supply
of less-viscous fluid to the tip of the gravity tongue

5. Conclusions
The focus of the present investigation is on analysing the dynamics of rectilin-

ear, homogeneous miscible displacements with gravity override on the basis of the
vorticity–streamfunction formulation of the governing equations. While a number of
the observed flow features had previously been reported, the vorticity-based point of
view often allows one to attribute these flow characteristics more clearly to the effects
of viscosity differences, density differences, or impermeable boundaries. In particular,
it enables us to understand the formation of the gravity tongue in terms of a fo-
cusing mechanism. This focusing mechanism is generated by the potential flow field,
which consists of two separate contributions. Superimposed on the time-independent
uniform base flow is the potential flow component generated by the horizontal bound-
aries at the top and bottom of the reservoir, which enforce the condition of vanishing
normal flow. This component of the potential flow field evolves with the flow, and it
is approximately proportional to the gravitational rise velocity. The overall potential
flow field has a streamwise velocity maximum near the upper wall, which in conjunc-
tion with the unfavourable viscosity gradient leads to strong local growth of a viscous
fingering instability. This strong local growth, in turn, manifests itself in kthe form of
a rapidly growing gravity tongue. In this way, the emergence of the gravity tongue can
be attributed to a local enhancement of the same basic instability mechanism that is
active across the entire interface. The numerical simulations for different values of the
governing parameters lead to scaling results which demonstrate that the thickness of
the gravity tongue grows with (G/Pe)1/2. This result indicates that the intial formation
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Figure 30. Detail of figure 29 for short times. Initially, the front can propagate more rapidly for
smaller R-values.

of the gravity tongue is related to the relative strengths of the two components of
the potential velocity field, while its subsequent change in thickness is governed by
diffusive effects. When interpreting the present, two-dimensional results, it is to be
kept in mind that the relative strengths of viscously driven and gravitationallly driven
effects can change in three dimensions, so that there is a strong motivation for us to
extend the present investigation to include a third dimension.

Another interesting extension concerns the inclusion of permeability heterogeneities.
In particular, the role of the resonance mechanism observed for neutrally buoyant
flows (Tan & Homsy 1992; De Wit & Homsy 1997a, b; Chen & Meiburg 1998b) will
have to be investigated in detail in the presence of density differences. This will require
a careful study of the interactions among all three of the vorticity components, as
well as the potential velocity field, which will be the subject of Part 2 of the present
investigation.
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